Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks

N. K. Butuk

K. Johnson

Prairie View A & M University

OVERVIEW

- SIMPLIFICATION OF HIGHER-DIMENSION DYNAMICAL SYSTEMS VIA NPCA NEURAL NETWORKS
- APPLICATION TO REACTIVE FLOWS (COMBUSTION)

COMPETING TECHNIQUES

- STEADY STATE APPROXIMATION
- PARAMETER LUMPING
- ILDM-CPS
- SINGULAR PERTURBATION THEORY
- CENTER MANIFOLD REDUCTION

Objective

- Implement Non-Linear PCA (NPCA)
- PCA-Principal Component Analysis
- NPCA Implemented as Neural Network
- Speed Up Training of NPCA via
- Techniques of Kernel Smoothing

OUTLINE

- INTRODUCTION-Neural Network Basics
- NONLINEAR PRINCIPAL COMPONENT ANALYSIS
- DETAILED MATHEMATICAL ANALYSIS
- RESULTS:
- . IMPLEMENTATION: SAMPLE MECHANISM)
- BRIEF DESCRIPTION OF FLOW SOLVER KEN JOHNSON
- CONCLUSIONS

- Artificial NN Consists of Computational Units Called Neurons
- Receive a Number of Input Signals
- Produce an Output Signal
- Real Valued Functions on Rⁿ

$$h(x) = \sigma(w^{T} x + b)$$

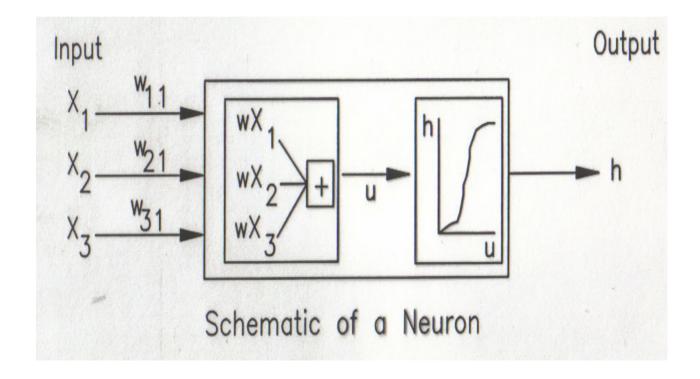
$$x \in i^{n}$$

$$w^{T} = (w_{1}, w_{2}...w_{n}) \in i^{n}$$

$$b \in i$$

$$\sigma(x) - is - known - as - sigmoid - function$$

Neuron



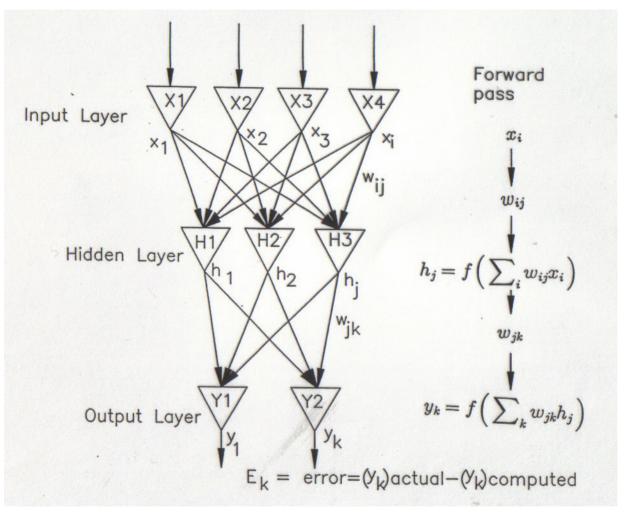
- Single Neuron (also known as Perceptron) Can only estimate linear functions.
- For General Non-Linear Problems MultiLayer Perceptrons (MLP-NN) are usually used.
- Feedforward Neural Network with one Hidden Layer Containing k neurons approximates a Real Valued Non-Linear Function on Rⁿ as

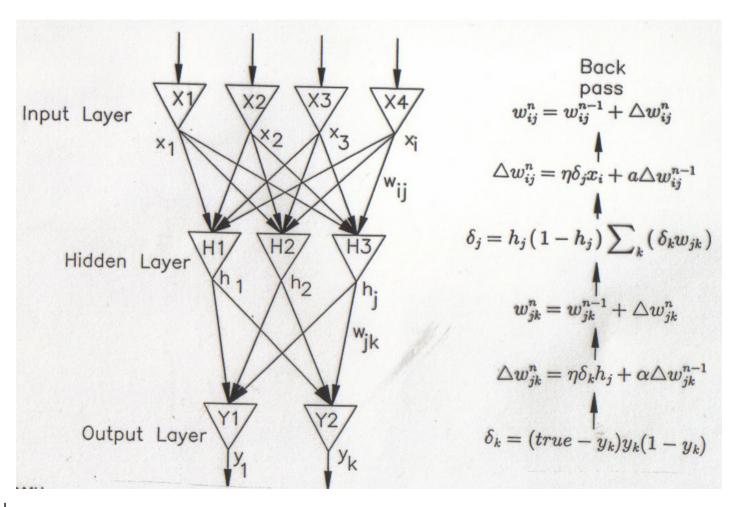
$$m(x) = \sum_{i=1}^{k} c_i \sigma(w_i^T x + b_i) + c_o$$

$$symbols-as-above-with$$

$$b_1..b_k,c_o,c_1...c_k \in i$$

w's,b's,c's are parameters that specify a NN





- Given (iid) Training Data, Chosen at Random from a population (X,Y) {(X₁,Y₁)...(X_m,Y_m)}
- The Parameters of the Network are chosen to minimize the empirical L₂ risk

$$\frac{1}{m} \sum_{j=1}^{m} \left| m(X_j) - Y_j \right|^2$$

- There are No Practical Algorithmic for finding the Global Minimum of L₂
- Algorithm Described above is the Popular BackPropagation
- Back Propagation (using steepest descent) often converges to a local minimum

Nonlinear Principal Component Analysis (NPCA)

- 1. Need for Mechanism Reduction
 - Typically can consists of >500 species
 - >2000 elementary chemical reactions
- 2. Full chemistry model will have to solve
 - >500 coupled Differential Equations
 - Computationally prohibitive

NPCA...2.

- 3. Most reaction state space maybe redundant
 - Active space may exist as manifolds of lower dimension
- 4. NPCA global transformation mapping from
 - High dimensional state space (n) to
 - Low dimensional manifold (m)

NPCA...3

• 5. Let:

$$X \in \mathbf{1}^{n}$$
 $Y \in \mathbf{1}^{m}$
 $m < n$
 $X = f(Y)$

• Intrinsic Dimensionality of Data really m not n

NPCA-NN...4

$$G: X \rightarrow Y$$
 $H: Y \rightarrow X$
 $H \circ G: X \rightarrow X$

 Need sufficient x-data points in state space a number of representative trajectories

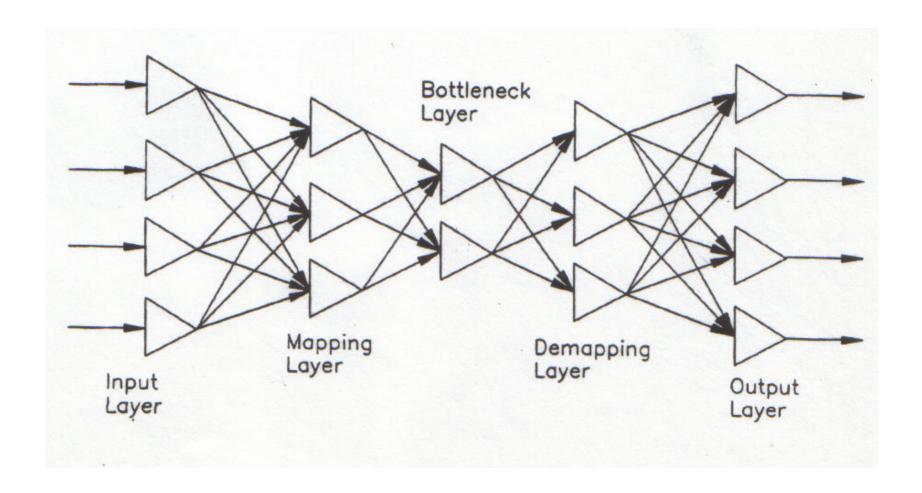
Generating Trajectory Data

- Need representative data within flammability limits of a given fuel
- Can use D.O.E. Software
- Trajectories Generated at Random

NPCA-NN Algorithm

- Consists of:
 - Two standard Multilayered Perceptrons (MLP)
 - First network implements G
 - Second network implements H
 - The "Bottleneck Layer" is the reduced dimension

NPCA-NN Schematic



Training in stages

- Accelerates convergence by several orders of magnitudes
- Problem: Combining Networks is a non-linear operation
- Several methods of combining available still active area of research

Results

- Test Mechanisms
 - Bromide acid synthesis

Bromide acid synthesis Mechanism

$$Br_{2} \xrightarrow{k_{1}} 2Br$$
 $2Br \xrightarrow{k_{2}} Br_{2}$
 $H_{2} \xrightarrow{k_{3}} 2H$
 $2H \xrightarrow{k_{4}} H_{2}$
 $H + Br \xrightarrow{k_{5}} HBr$
 $HBr \xrightarrow{k_{6}} H + Br$

$$\frac{d [Br_{2}]}{dt} = k_{2} [Br]^{2} - k_{1} [Br_{2}]$$

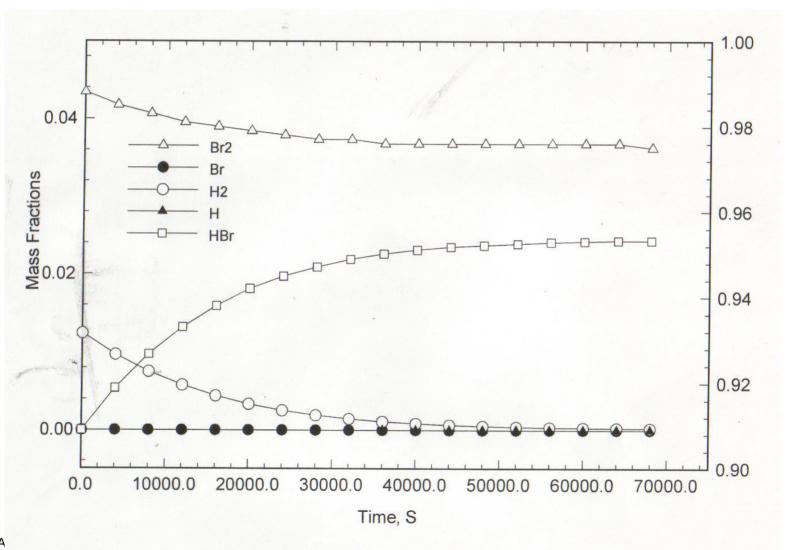
$$\frac{d [Br]}{dt} = 2k_{1} [Br_{2}] - 2k_{2} [Br]^{2} + k_{6} [HBr] - k_{5} [H] [Br]$$

$$\frac{d [H_{2}]}{dt} = k_{4} [H]^{2} - k_{3} [H_{2}]$$

$$\frac{d [H]}{dt} = 2k_{3} [H_{2}] - 2k_{4} [H]^{2} + k_{6} [HBr] - k_{5} [H] [Br]$$

$$\frac{d [HBr]}{dt} = k_{5} [H] [Br] - k_{6} [HBr]$$
 $k_{1} = 9.2E - 5, \quad k_{2} = 4.0E15, \quad k_{3} = 9.2E - 5$
 $k_{4} = 4.0E15, \quad k_{5} = 1.0E15, \quad k_{6} = 1.0E - 5$

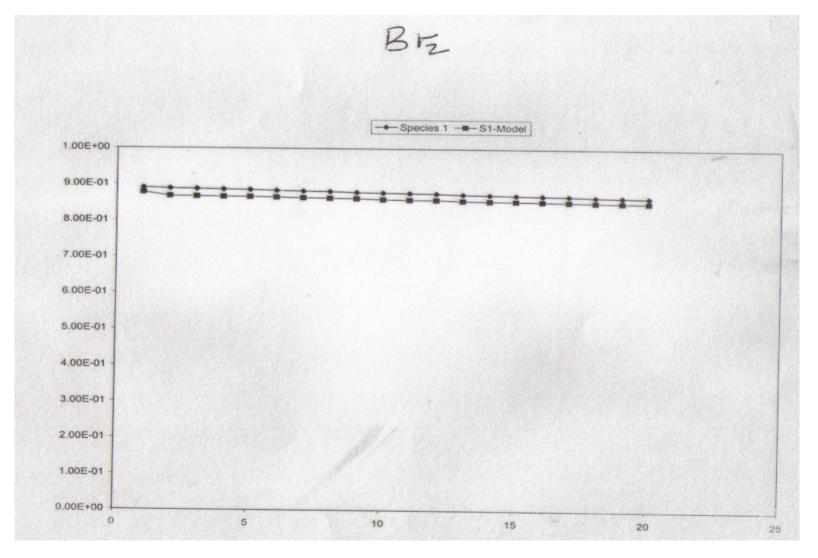
Results-1



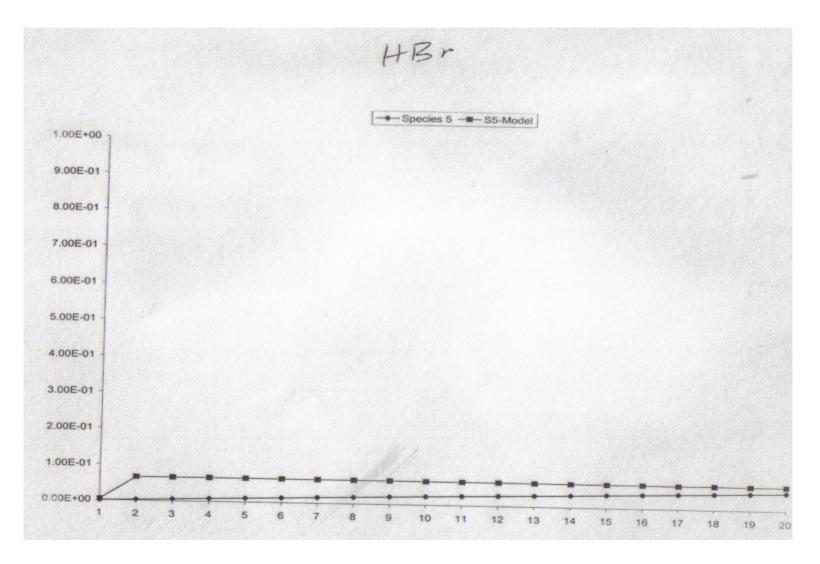
PVA

7-9/9

Results-2



Results-3



- We have a population consisting of random vectors (X,Y). X is Rⁿ – valued and y is R-valued
- Looking for a function
- f: Rⁿ ->R
- Our Criteria for finding f is that the expectation of L₂ norm (risk) is small
- Note $L_2 = |f(X)-Y|^2$, is also random
- Let m(x) be the function that minimizes E |f(X)-Y|²
- Function m(x) is unknown, we only have sampled data to estimate it.

Given a function g(x) of a random variable x

$$E[g(x)] = \int g(x)P(x)dx$$

Where P(x) is the distribution or density of x

Let $\hat{m}(x)$ be an approximation of m(x) using data

$$E\left[\left|\hat{m}(x)-Y\right|^2\right] = \int_{1}^{\infty} \left|\hat{m}(x)-m(x)\right|^2 P(x)dx + E\left|m(x)-Y\right|^2$$

 $\hat{m}(x) = m(x)$ if the first term on right, L₂=0

- The important term P(x) is the distribution, or density of X. It is usually also estimated from data.
- A popular approach is termed Kernel Smoothing.
- Define a Kernel function $K(\frac{x-X_i}{h})$ having compact support and symmetric about origin

• Also
$$\int K(x)d(x) = 1$$

The Density can be approximated from data

$$\hat{P}(x) = \frac{1}{mh} \sum_{i=1}^{m} K\left(\frac{x - X_i}{h}\right)$$

- Now how do we Estimate m(x) from data
- Several different approaches have been developed
 - Parametric
 - Non-Parametric Approaches
- Examples of Non-Parametric methods
 - Neural Networks(NN)
 - Radical Basics Functions Networks
 - Orthogonal series methods (including wavelets)
 - Least squares Estimates using splines
 - Local Polynomial Kernel Estimates
- Our focus is on NN approaches

• From statistical theories of regression m(x) can be defined as $m(x) = E(Y | X = x) = \int yP(y | x)dy$

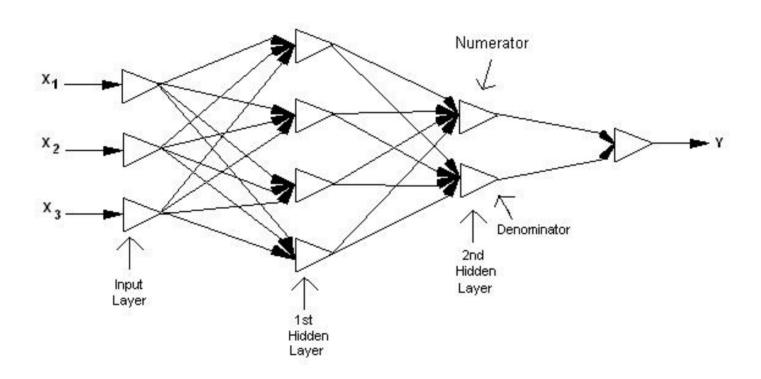
$$= \frac{\int y P(x, y) dy}{\int P(x, y) dy}$$

• P(x,y) is the joint density of (X,Y). It can be shown that the above can be estimated from data as

$$\hat{m}(x) = \frac{\frac{1}{mh} \sum_{i=1}^{m} K\left(\frac{x - X_i}{h}\right) Y_i}{\frac{1}{mh} \sum_{i=1}^{m} K\left(\frac{x - X_i}{h}\right)}$$

- This is known as the Nadaray and Watson Estimator (NWE).
- It is the basis of the Generalized Regression Neural Network. (GRNN).
- One major advantage of this NN is that estimates of Y are obtained directly without any training.
- We have Chosen to Study this Network and find ways of incorporating the Desirable Properties in our Data Reduction Model- NPCA-NN

Schematic of GRNN



Further Mathematical Analysis of GRNN

 In Classical Parametric Statistics, L₂ is also termed the Mean Squared Error (MSE).

$$MSE(m) = E(m-m)^2$$

Which can be decomposed into Variance and squared Bias

$$MSE(\hat{m}) = Var(m) + \left[Em - m\right]^{2}$$

With a Change of Variable Let

$$K_h(x, X_i) = \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

• To Compute $\mathit{MSE}(\hat{m})$ we need the mean and variance of

 \hat{m}

• The (NW)-Estimator is once again

$$\hat{m}(x) = \frac{\frac{1}{mh} \sum_{i=1}^{m} K\left(\frac{x - X_i}{h}\right) Y_i}{\frac{1}{mh} \sum_{i=1}^{m} K\left(\frac{x - X_i}{h}\right)}$$

 Note that the denominator is the density estimate of P(x)

ie

$$P(x) = \frac{1}{mh} \sum_{i=1}^{m} K\left(\frac{x - X_i}{h}\right) = \frac{1}{m} \sum_{i=1}^{m} K_h(x - X_i)$$

The (NW)-Estimator is Linear and can be written as:

$$\hat{m}(x) = \sum_{i=1}^{m} v_i Y_i$$

• Therefore Means and Variance is easily computed

$$E\left[\hat{m}(x)\right] = \sum_{i=1}^{m} v_i m(x_i)$$

$$Var\left[\hat{m}(x)\right] = \left(\sum_{i=1}^{m} v_i^2\right)\sigma^2$$

 ie you are smoothing the points (x_i,m(x_i)) rather than (X_i,Y_i)

 In Computing Means and Variance of NW-Estimator, Denominator and Numerator are treated separately ie for denominator:

$$E[\hat{p}(x)] = EK_h(x, X)$$

$$Var[\hat{p}(x)] = \frac{1}{m} VarK_h(x, X)$$

- Variance can be written as: variance = 2nd moments (mean)²
- To proceed, convolution is used followed by Taylor series expansion. Derivation is long

- Final Theorem is:
- Bias Term: Let u=x-X_i

$$\left(m''(x) + \frac{2m'(x)P'(x)}{P(x)}\right)\frac{h^2}{2}\int u^2K_h(u)du$$

Variance Term

$$\frac{\sigma^{2}(x)}{P(x)mh} \int K_{h}^{2}(u)du$$

- These analysis answer two important concepts: Consistency and Rate of Convergence of NW-Estimator.
- In addition, In CFD of Reactive Flows, we want to look at the Bias terms.
- How does the Bias term depend on the Pattern of design points P(x) asymptotically?

- Can you choose weight function K(u) such that the Bias is independent of P(x)? Answer Yes-> Grid Free Solution of CFD using Neural Network
- An Estimator is said to be Consistent if as the sample size grows:

$$\lim_{m\to\infty} \int \left[\hat{m}(x) - m(x) \right]^2 P(x) dx = 0$$

Consistency does not tell us How Fast L₂ approaches 0.
 Here we look at the expectation of L₂ error.

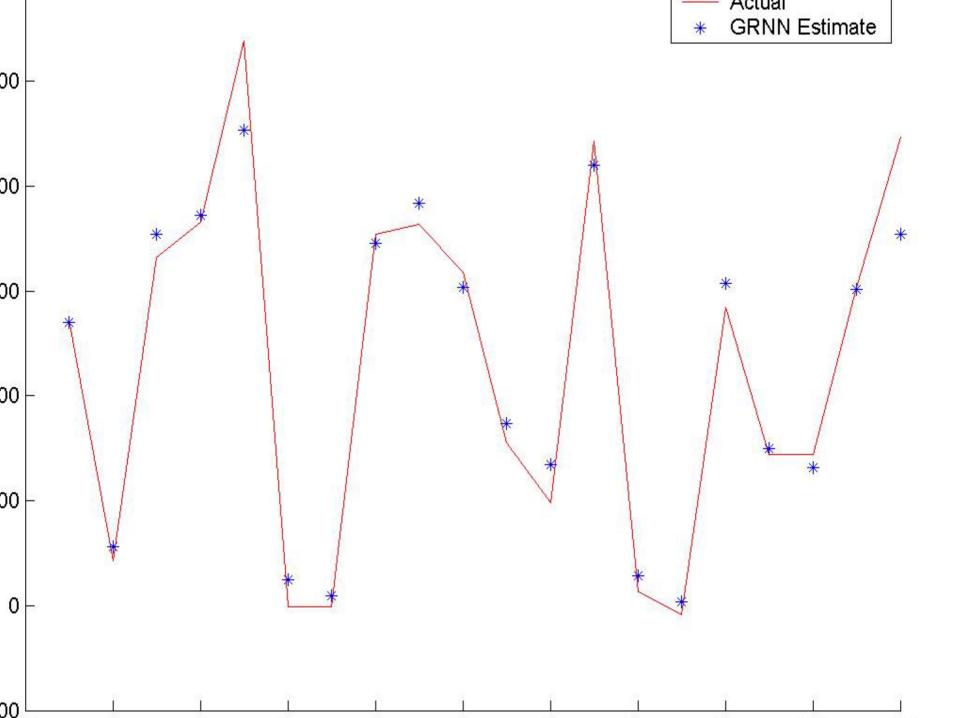
$$E\int |\hat{m}(x) - m(x)|^2 P(x) dx$$

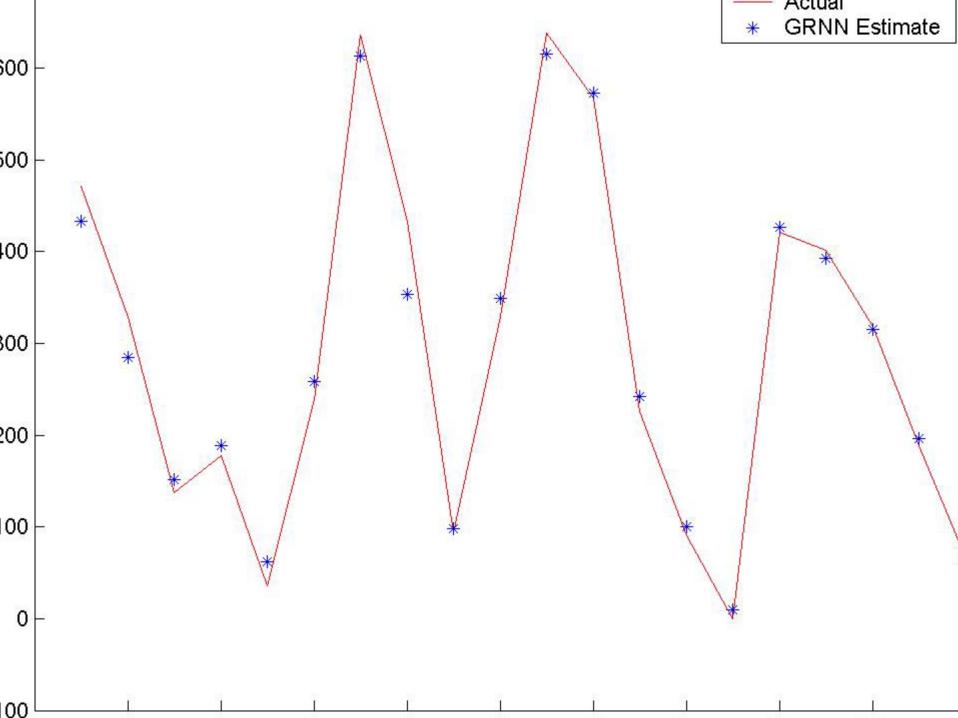
Difficult to analyze without imposing some smoothens assumptions on m(x)

GRNN Results

3-Dimensional Test Function

$$f(x_1, x_2, x_3) = 4x_1^2 + 2x_2^2 + x_3^2 - x_1x_2 + x_2x_3 - 5x_1 - 9x_2 + x_3$$





The Euler Solver

Overview

- The Euler Solver
- General Layout of the Program
- Results

The Euler Solver

The general incompressible flow of the governing equation:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \tag{1.0a}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial \rho}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$
(1.0b)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{1}{\rho} \frac{\partial \rho}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$
(1.0c)

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial \rho}{\partial z} + v \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$$
(1.0d)

The 2D Euler Equation

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{1.1a}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = 0 \tag{1.1b}$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = 0 \tag{1.1c}$$

Euler equations in conserved form

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0 \tag{1.2}$$

$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho \mathbf{u} \\ \rho \mathbf{u} \\ \rho \mathbf{v} \end{bmatrix} : F = \begin{bmatrix} \rho \mathbf{u} \\ \rho \mathbf{u}^2 + p \\ \rho \mathbf{u} \mathbf{v} \\ \rho \mathbf{u} \mathbf{v} \end{bmatrix} : G = \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{u} \mathbf{v} \\ \rho \lambda^2 + p \\ \rho \mathbf{h} \end{bmatrix} \tag{1.3}$$

General Layout of the program

- Program requirements
- Boundary and Initial Conditions
- Solution procedure
- Initializing the variables

Program Requirements

- The grids should be generated independently and read in as part of the initial data.
- The initial values must be made available to the program and part of the initial data as well.
- The time-steps should be chosen according to CFD criteria for stability.

Boundary and Initial Conditions

- The boundary conditions are calculated using extrapolation, interpolation and in some cases algebraic formulae.
- Since the Euler solver uses the time marching approach, it requires initial values of temperature, pressure etc.

Solution Procedure

- Step one
 - Set up the grid and the initial guess
 - These information are read into the program.
 - Apart form the grid and initial guess various other data must be fed in so that the problem is well defined
 - Boundary conditions
 - Coefficients of the Runge-Katta scheme
 - Relaxation parameter
 - Printing criteria etc

Solution Procedure II

- Step two
 - Computation of all relevant quantities
 - Cell areas and projective lengths along the two Cartesian axes
 - Radii of curvature at points of the blade surfaces.

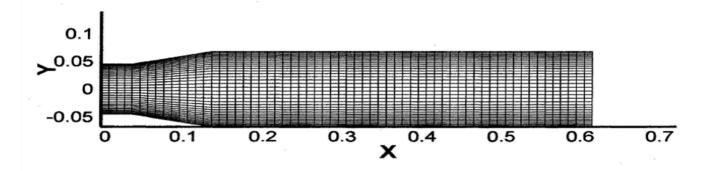
Initializing the variables

The variables to initialize are the ones that will be required in the approximating of the continuity, momentum and energy.

Problem

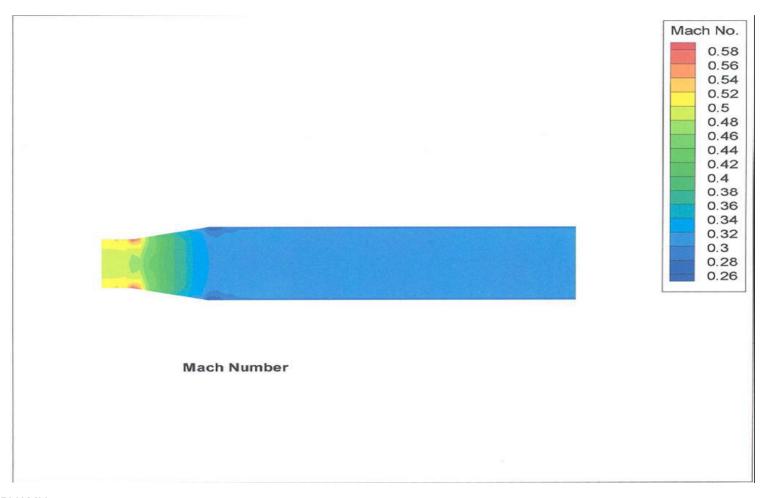
• The code was tested on a simple problem, which was to solve for steady flow of air through a plane symmetrical diffuser. In this problem the viscosity and density of air were taken to be 1.91 X 10 –5 kg/ms and 1.21 kg/m³, respectively. The flow profile at the inlet was assumed to be flat with a bulk velocity of 160 m/s. The flow at the outlet was assumed to be fully developed..

Plane Symmetrical Diffuser

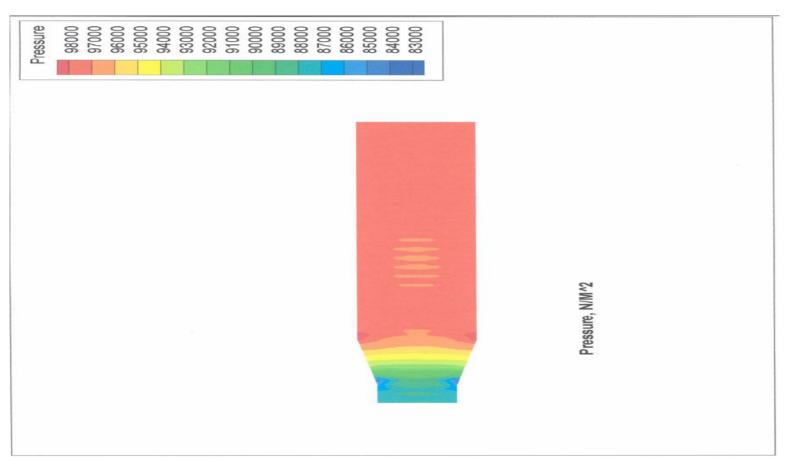


Grid Dimensions in M

Results for Mach Number



Results Static Pressure Distribution



Conclusion

- Demonstrated the NPCA reduction technique for mechanism reduction on sample reaction mechanism
- Details of Mathematical Analysis Presented
- Description of Test Flow Solver
- Work is in progress
- Acknowledge the support of DOE Under grant numbers:
 - DE-FG26-00NT-40830
 - DE-FG26-03NT-41913